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Lecture 2

Numerical Solution of ODEs
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General Method

Start with an nth-order set of coupled ODEs involving x and dnx
dtn .

Reduce to a set of first-order equations by introducing

ξ =
dx

dt

to obtain an n − 1-order ODE in x coupled to a first-order equation in ξ.
Repeat until all equations are first-order.
Then, the general case is

ẏ = f (y, t).

We want to integrate this set of equations for a total time T = t1 − t0. To
do so, divide T into steps of size h.
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Euler Method

The simplest method is that of Euler.

y(t + h) = y(t) + hẏ(t).

In terms of steps,
yn+1 = yn + hẏn.

Taylor expand y(t + h),

y(t + h) = y(t) + hẏ(t) +
h2

2
ÿ(t + h) +O

(
h3
)
,

to see that Euler is accurate up to terms of O(h).
We call Euler a first-order scheme.
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Higher orders

If we stick with Euler we will need to make h very small, i.e., we will need
to take a large number of steps.
Once we start looking for higher-order methods, we find that there are
infinitely many at a given order.
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4th-order Runge-Kutta

4th-order Runge-Kutta is a favorite:

yn+1 = yn +
1

6
(a + 2b + 2c + d),

where
a = hf (yn, tn) ,

b = hf

(
yn +

a

2
, tn +

h

2

)
,

c = hf

(
yn +

b

2
, tn +

h

2

)
,

and
d = hf (yn + c, tn + h) .

Note that this method requires four function evaluations.
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4th-order Runge-Kutta, continued

To see that this method is, indeed, accurate to 4th order in h, Taylor
expand

yn+1 = yn + hẏn +
h2

2
ÿn + . . .

and use
d

dt
=

∂

∂t
+

dy

dt

∂

∂y

=
∂

∂t
+ f

∂

∂y
.

You can find this in “any book.”
There are many algorithms in common use. See the exercise.
Some of the more interesting methods make use of the Jacobian

Jij ≡
∂fi
∂yj

.
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Adaptive Step Sizes

Read Numerical Recipes
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Example

Example: A non-relativistic particle in a uniform gravitational field in one
dimension.

m
d2x

dt2
= −g ⇒ d2x

dt2
= − g

m

y =

(
x
ẋ

)
=

(
y0
y1

)
,

where
ẏ0 = y1

ẏ1 = − g

m
≡ −γ

Finally we have the form we require:

d

dt

(
y0
y1

)
=

(
y1
−γ

)
and

J =

(
0 1
0 0

)
.
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Example Code

Get the example code from the wiki:
ode example.py
uniform accel.py
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Assignment 1

(1) Rewrite the example for the simple harmonic oscillator

m
d2x

dt2
= −kx ,

using

κ ≡ k

m
.

Put the new functions in a file sho.py. You should include the analytic
solution, but you may start with the initial condition y1(0) = 0.

(2) Try all the integrators in GSL. See how many steps and how much
time is required for each.

(3) Calculate the (scaled) energy for the SHO. Redo (2), including
the energy in the plots.
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